Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293038

RESUMO

On-chip 3D culture systems that incorporate immune cells such as lymphocytes and stromal cells are needed to model immune organs in engineered systems such as organs-on-chip. Photocrosslinking is a useful tool for creating such immune-competent hydrogel cultures with spatial cell organization. However, loss of viability and motility in photocrosslinked gels can limit its utility, especially when working with fragile primary cells. We hypothesized that optimizing photoexposure-induced ROS production, hydrogel porosity or a combination of both factors was necessary to sustain cell viability and motility during culture in photocrosslinked gelatin-thiol (GelSH) hydrogels. Jurkat T cells, primary human CD4+ T cells and human lymphatic fibroblasts were selected as representative lymphoid immune cells to test this hypothesis. Direct exposure of these cells to 385 nm light and LAP photoinitiator dramatically increased ROS levels. Pretreatment with an antioxidant, ascorbic acid (AA), protected the cells from light + LAP-induced ROS and was non-toxic at optimized doses. Furthermore, scanning electron microscopy showed that native GelSH hydrogels had limited porosity, and that adding collagen to GelSH precursor before crosslinking markedly increased gel porosity. Next, we tested the impact of AA pretreatment and increasing gel porosity, alone or in combination, on cell viability and function in 3D GelSH hydrogel cultures. Increasing gel porosity, rather than AA pretreatment, was more critical for rescuing viability of Jurkat T cells and spreading of human lymphatic fibroblasts in GelSH-based gels, but both factors improved the motility of primary human CD4+ T cells. Increased porosity enabled formation of spatially organized co-cultures of primary human CD4+ T cells and human lymphatic fibroblasts in photo-crosslinked gels in a multi-lane microfluidic chip, towards modeling the lymphoid organ microenvironment. Some optimization is still needed to improve homogeneity between regions on the chip. These findings will enable researchers utilizing photocrosslinking methods to develop immunocompetent 3D culture models that support viability and function of sensitive lymphoid cells.

2.
Transfusion ; 63(4): 826-838, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907655

RESUMO

BACKGROUND: Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, although it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. STUDY DESIGN AND METHODS: WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. RESULTS: When compared with antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b, and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. DISCUSSION: Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared with the well-studied immunogen alum vaccination.


Assuntos
Eritrócitos , Switching de Imunoglobulina , Camundongos , Humanos , Animais , Eritrócitos/metabolismo , Isoanticorpos , Imunoglobulina G/metabolismo , Vacinação
3.
Micromachines (Basel) ; 14(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838135

RESUMO

Bubbles are a common cause of microfluidic malfunction, as they can perturb the fluid flow within the micro-sized features of a device. Since gas bubbles form easily within warm cell culture reagents, degassing is often necessary for biomicrofluidic systems. However, fabrication of a microscale degasser that can be used modularly with pre-existing chips may be cumbersome or challenging, especially for labs not equipped for traditional microfabrication, and current commercial options can be expensive. Here, we address the need for an affordable, accessible bubble trap that can be used in-line for continuous perfusion of organs-on-chip and other microfluidic cultures. We converted a previously described, manually fabricated PDMS degasser to allow scaled up, reproducible manufacturing by commercial machining or fused deposition modeling (FDM) 3D printing. After optimization, the machined and 3D printed degassers were found to be stable for >2 weeks under constant perfusion, without leaks. With a ~140 µL chamber volume, trapping capacity was extrapolated to allow for ~5-20 weeks of degassing depending on the rate of bubble formation. The degassers were biocompatible for use with cell culture, and they successfully prevented bubbles from reaching a downstream microfluidic device. Both degasser materials showed little to no leaching. The machined degasser did not absorb reagents, while the FDM printed degasser absorbed a small amount, and both maintained fluidic integrity from 1 µL/min to >1 mL/min of pressure-driven flow. Thus, these degassers can be fabricated in bulk and allow for long-term, efficient bubble removal in a simple microfluidic perfusion set-up.

4.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36712006

RESUMO

Background: Studies of human patients have shown that most anti-RBC alloantibodies are IgG1 or IgG3 subclasses, though it is unclear why transfused RBCs preferentially drive these subclasses over others. Though mouse models allow for the mechanistic exploration of class-switching, previous studies of RBC alloimmunization in mice have focused more on the total IgG response than the relative distribution, abundance, or mechanism of IgG subclass generation. Given this major gap, we compared the IgG subclass distribution generated in response to transfused RBCs relative to protein in alum vaccination, and determined the role of STAT6 in their generation. Study Design and Methods: WT mice were either immunized with Alum/HEL-OVA or transfused with HOD RBCs and levels of anti-HEL IgG subtypes were measured using end-point dilution ELISAs. To study the role of STAT6 in IgG class-switching, we first generated and validated novel STAT6 KO mice using CRISPR/cas9 gene editing. STAT6 KO mice were then transfused with HOD RBCs or immunized with Alum/HEL-OVA, and IgG subclasses were quantified by ELISA. Results: When compared to antibody responses to Alum/HEL-OVA, transfusion of HOD RBCs induced lower levels of IgG1, IgG2b and IgG2c but similar levels of IgG3. Class switching to most IgG subtypes remained largely unaffected in STAT6 deficient mice in response to HOD RBC transfusion, with the one exception being IgG2b. In contrast, STAT6 deficient mice showed altered levels of all IgG subtypes following Alum vaccination. Discussion: Our results show that anti-RBC class-switching occurs via alternate mechanisms when compared to the well-studied immunogen alum vaccination.

5.
Organs Chip ; 42022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35535262

RESUMO

Micropatterning techniques for 3D cell cultures enable the recreation of tissue-level structures, but the combination of patterned hydrogels with organs-on-chip to generate organized 3D cultures under microfluidic perfusion remains challenging. To address this technological gap, we developed a user-friendly in-situ micropatterning protocol that integrates photolithography of crosslinkable, cell-laden hydrogels with a simple microfluidic housing, and tested the impact of crosslinking chemistry on stability and spatial resolution. Working with gelatin functionalized with photo-crosslinkable moieties, we found that inclusion of cells at high densities (≥ 107/mL) did not impede thiol-norbornene gelation, but decreased the storage moduli of methacryloyl hydrogels. Hydrogel composition and light dose were selected to match the storage moduli of soft tissues. To generate the desired pattern on-chip, the cell-laden precursor solution was flowed into a microfluidic chamber and exposed to 405 nm light through a photomask. The on-chip 3D cultures were self-standing and the designs were interchangeable by simply swapping out the photomask. Thiol-ene hydrogels yielded highly accurate feature sizes from 100 - 900 µm in diameter, whereas methacryloyl hydrogels yielded slightly enlarged features. Furthermore, only thiol-ene hydrogels were mechanically stable under perfusion overnight. Repeated patterning readily generated multi-region cultures, either separately or adjacent, including non-linear boundaries that are challenging to obtain on-chip. As a proof-of-principle, primary human T cells were patterned on-chip with high regional specificity. Viability remained high (> 85%) after 12-hr culture with constant perfusion. We envision that this technology will enable researchers to pattern 3D co-cultures to mimic organ-like structures that were previously difficult to obtain.

6.
Nat Commun ; 12(1): 1645, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712594

RESUMO

Anemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supplementation, known to abrogate the erythroid iron restriction response, induces reassembly of microtubules and Golgi in iron deprived progenitors. Ferritin, based on proteomic profiles, regulation by iron and isocitrate, and putative interaction with microtubules, is assessed as a candidate mediator. Knockdown of ferritin heavy chain (FTH1) in iron replete progenitors induces microtubule collapse and erythropoietic blockade; conversely, enforced ferritin expression rescues erythroid differentiation under conditions of iron restriction. Fumarate, a known ferritin inducer, synergizes with isocitrate in reversing molecular and cellular defects of iron restriction and in oral remediation of murine anemia. These findings identify a cytoskeletal component of erythroid iron restriction and demonstrate potential for its therapeutic targeting in ACDI.


Assuntos
Anemia/metabolismo , Anemia/terapia , Citoesqueleto/metabolismo , Ferro/metabolismo , Microtúbulos/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Células Eritroides/metabolismo , Eritropoese/fisiologia , Feminino , Ferritinas/metabolismo , Isocitratos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases/metabolismo , Proteômica
8.
J Immunol ; 192(1): 123-35, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24298013

RESUMO

IL-2 and IL-15 are common γ-chain family cytokines involved in regulation of T cell differentiation and homeostasis. Despite signaling through the same receptors, IL-2 and IL-15 have non-redundant roles in T cell biology, both physiologically and at the cellular level. The mechanisms by which IL-2 and IL-15 trigger distinct phenotypes in T cells remain elusive. To elucidate these mechanisms, we performed a quantitative comparison of the phosphotyrosine signaling network and resulting phenotypes triggered by IL-2 and IL-15. This study revealed that the signaling networks activated by IL-2 or IL-15 are highly similar and that T cell proliferation and metabolism are controlled in a quantitatively distinct manner through IL-2/15R signal strength independent of the cytokine identity. Distinct phenotypes associated with IL-2 or IL-15 stimulation therefore arise through differential regulation of IL-2/15R signal strength and duration because of differences in cytokine-receptor binding affinity, receptor expression levels, physiological cytokine levels, and cytokine-receptor intracellular trafficking kinetics. These results provide important insights into the function of other shared cytokine and growth factor receptors, quantitative regulation of cell proliferation and metabolism through signal transduction, and improved design of cytokine based clinical immunomodulatory therapies for cancer and infectious diseases.


Assuntos
Interleucina-15/farmacologia , Interleucina-2/farmacologia , Fenótipo , Receptores de Citocinas/metabolismo , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Fosforilação , Receptores de Interleucina-12/metabolismo , Receptores de Interleucina-2/metabolismo , Linfócitos T/imunologia , Tirosina/metabolismo
9.
Tissue Eng ; 11(5-6): 701-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15998211

RESUMO

We present an easily applicable and inexpensive method for patterning cells on arbitrary surfaces including biological gels with little loss of viability or function. Single-cell suspensions of human umbilical vein endothelial cells and NIH 3T3 fibroblasts were sprayed with an off-the-shelf airbrush through a mask to create 100-microm scale patterns on collagen gels. Three-dimensional patterns were created by layering a collagen gel on top of the first pattern and patterning the top gel. Coculture of rat hepatocytes with NIH 3T3 patterns on collagen gels resulted in localized increased activity of cytochrome P-450 along the pattern. These results suggest that cell spraying is a useful tool for the study of heterotypic cellular interactions and tissue-engineering applications on biologically relevant matrices, and for the creation of three-dimensional cell patterns in vitro.


Assuntos
Géis , Engenharia Tecidual , Animais , Sobrevivência Celular , Técnicas de Cocultura , Colágeno , Sistema Enzimático do Citocromo P-450/fisiologia , Hepatócitos , Humanos , Camundongos , Células NIH 3T3 , Pressão , Engenharia Tecidual/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...